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The in-plane stiffness of a paper sheet decreases as the amount of interfibre bonding is reduced. 
Part of this reduction has been explained in the past as due to the absence of stress in the 
constituent fibrous material in directions transverse to the fibre axis in a lightly bonded sheet. 
A model is offered to explain how the remaining reduction of stiffness for lightly bonded 
sheets is dependent on the uniformity of mass distribution, i.e., the formation, of the sheet. 
The theory is shown to be consistent with reported experimental results. 

1. I n t r o d u c t i o n  
Much progress has been made in the past 30 years in 
understanding the in-plane elastic behaviour of paper. 
We wish to predict this behaviour knowing the physi- 
cal properties of  the individual fibres, and knowing the 
geometry of the fibres and of their arrangement in the 
sheet. From the early, and seminal, simple network 
theories of  Cox [1] and LaCacheux [2] mathematical 
models have evolved which include effects such as 
finite fibre length, fibre curl, drying stresses, and bond 
elasticity [3-5]. All of these models assume a uniform 
distribution of mass density in the sheet, i.e., no 
account is taken of  formation. It is the purpose of the 
present work to make an assessment of this influence. 
We will conclude that for a well bonded sheet forma- 
tion effects should be secondary, but we will propose 
a model which predicts the fall-off of Young's modu- 
lus in poorly bonded sheets in terms of  formation 
effects. This model will avoid examining the problem 
of strain transfer to an individual fibre from those 
surrounding it. The latter approach was successfully 
utilized by Page and Seth [5] to describe the influence 
a low relative bonding area has on paper stiffness. 
Their expression for the dependence of  stiffness on 
relative bonded area showed very good agreement 
with their experimental findings. The extreme com- 
plexity of the geometry and hence of the local stress 
distribution in the neighbourhood of a fibre means 
that a simple "micro-formation" model such as will be 
proposed would seem to be worthwhile as an alterna- 
tive, albeit more abstract, explanation of this pheno- 
menon. The current model leads to an expression for 
the dependence of  Young's modulus on relative bonded 
area of a form different from that of Page and Seth, 
but equally able to explain their experimental data. 
Both their theory and the present one recognize that 
the drop off in stiffness with decreasing relative bonded 
area is brought about by non-uniformity of the strain 
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field in the sheet, but whereas the Page-Seth theory 
considers non-uniformities in an individual fibre, the 
present theory sees the dominant effect on non-unifor- 
mities in the strain field as resulting from non-unifor- 
mity of  the mass density of  the sheet at a somewhat 
larger dimensional scale. 

At the outset we point out that it has recently been 
shown that the in-plane stiffness of a sheet is greater in 
a well bonded sheet than in a poorly bonded sheet due 
to a mechanism which is operative even when the 
strain distribution in the fibres is completely uniform 
[6]. This is due to the fact that in a well bonded sheet 
the fibres are stressed in the plane of the sheet also in 
directions perpendicular to the fibre axes, a pheno- 
menon neglected in simple network models. Consider- 
ing the actual elastic behaviour of  the fibre cell wall it 
was shown that this increase is as much as 25% com- 
pared to the stiffness predicted by a simple network 
model. The actual difference, however, in stiffness 
between a well bonded and a lightly bonded sheet is 
experimentally found to be somewhat greater than 
this value [5]. It has been indicated [6] that even in a 
relatively lightly bonded sheet an appreciable amount  
of  forced transverse deformation of  the fibres occurs; 
thus the fall off in stiffness as bonding is reduced 
cannot be explained by the above mechanism alone. 

The mass density of paper is far from uniform. 
Instruments for determining the distribution of mass 
density and techniques for its quantification have been 
put forth by many investigators (see [7], p. 185 if). 
The simplest representation of  the variation of mass 
density is obtained by subdividing a sheet into a 
checker-board of inspection squares of  side length a. 
The variance of the mass density can then be experi- 
mentally determined as a function of a. Clearly if a is 
large the variance will approach zero. Such variances 
have been determined as a function of inspection 
square size. Corte [8] for instance has published this 
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type of data for 24 different papers. For  the smallest 
square he considered, ! mm, the largest coefficient of 
variation he found was 0.18. (The coefficient of vari- 
ation is defined as the square root of  the variance of  
mass density divided by the mean mass density of the 
sheet.) As the size of the inspection zone increases the 
coefficient of  variation rapidly falls off. Clearly the 
local stiffness of the sheet is greater in areas where the 
mass density is greater. In fact it is reasonable to 
assume that the local elastic stiffness is proportional to 
local mass density. This is the outcome of the basic 
network theories, and if not precisely true for finite 
length fibres, should at least be a very good first 
approximation. We are thus confronted with the 
problem of  determining the effective in-plane stiffness 
of  a thin elastic sheet when the local stiffness is a 
random function of  position in the sheet. If the effec- 
tive stiffness were exactly equal to the global average 
of the local stiffness then the various theories for 
predicting sheet stiffness, although developed for 
uniform mass densities, would be applicable in the 
current instance also. However effective stiffness can 
rigorously be shown to be always lower than the 
global average stiffness. Any non-uniformity of mass 
density thus causes some reduction in stiffness. This 
reduction is, however, quite small if the coefficient of 
variation of the mass density (and hence of the local 
stiffness) is small. 

2. Sheet with varying stiffness 
For the current discussion it is convenient to define 
stiffness in terms of the in-plane shear modulus, 
denoted by G, and the plane stress area modulus, 
denoted by K. These are related to the in-plane 
Young's modulus E and in-plane Poisson ratio by 

4KG K - G 
E - v - ( la,  b) 

K + G "  K + G  

For a sheet with varying stiffness, but which is statisti- 
cally homogeneous and isotropic it is easily shown 
that rigorous bounds on the global effective values of  
the shear modulus and plane stress area modulus, G* 
and K* respectively, are given by 

I G ) - '  ~ G* <<. ( G )  (2) 

Here ( ) denotes global area average. These results 
are easily derived from the classical principles of 
potential and complementary energy [9]. Up to second- 
order moments in G and K these bounds are simply 

var G'] G* 
(G)  1 7G~, /  ~< ~< <[G) (4) 

var K )  K* 
<K) 1 7-s ~ ~< <K> (5) 

Here var denotes the variance. Beran [10] has pointed 
out that one can use perturbation techniques to deter- 
mine effective global properties of heterogeneous 
materials. Such effective properties are not geometry 
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dependent up to the order of a linear term in the 
variance of the stiffness constants. We will determine 
effective stiffness up to this order by considering the 
two-phase case. Here we have only two materials 
constituting the statistically isotropic material; one 
has phase properties G1 and K1; the other has phase 
properties (72 and K2. We define the phases such that 
G~ ~< (72 and Kj <<, K2. (The combinations of material 
constants for which these two inequalities cannot sim- 
ultaneously be satisfied will not be of  interest to us.) 
Hashin [11] found bounds for the analogous 
generalized plane strain problem. A cursory examin- 
ation of  the analysis reveals that the bounds carry over 
to the case of plane stress if in his expressions the 
"plane strain bulk modulus" is replaced by the "plane 
stress area modulus". Then from Hashin's equations 
(4.25 to (4.28) 

7)2 G * Gl 4- ~< 
1 ( K I  + 2G1)vl + 

G2 - GI 2Gl (K1 + Gt) 

Vl ~< G 2 4- (6) 
1 (K2 4- 2G2)v2 + 

GL - G~ 2G 2 (K 2 4- G2) 

gO t 
K I 4- - ~<K* 

1 v l + 
K2 - K j  K l  + GI 

Vl ~< & + (7) 
I v 2 

+ 
KI - /s K2 + G2 

Here v~ and v2 are the area fractions (volume fractions 
in the original formulation) of the two phases. We will 
be interested only in the case when both materials 
have the same Poisson ratio, and for simplicity only 
when v~ = v2 = 0.5, i.e., equal amounts of each 
phase. Then after some manipulation the bounds on G 
can be put into the form 

<G) 1 -  

~<(G) 

_ 

_ 

1 + v v a r G  
2 <G) 2 

1 + v v a r G  
2 ( G )  2 

~<G* 

1 4- ( ] -  2 )  (Var G ) I / 2 ~  ~G)2 )  
(8) 

v is the common Poisson ratio of both materials. Here 
we have used the fact that for the case considered 

GI 4- G2 (G2 -- GI )2 
( G )  - var G - 

2 4 

The bounds on K are identical to the above if each G 
is replaced by K. Then to the linear term in variance 
we have 

G* = ( G ) ( 1  1 + v v a r G )  
2 <G>: J (9) 

and a similar expression is obtained for K. This is the 
geometry independent effective stiffness, valid for low 



TAB L E I Calculated stiffnesses for material shown in Fig. 1, together with the Hashin bounds. 

G2/G I and K2/K  I Hard Material Soft Material 
Inclusion Inclusion 

G* K* G* K* 

(e) (K) (G) 4K) 

Hashin bounds$ 

G* Lower G* Upper 

( G )  (G) 

2 0.920 0,918 0.933 0.933 
4 0.7ll 0.708 0.796 0.797 

10 0.403 0.397 0.636 0.640 
40 0.125 0.122 0.518 0.525 

400 0.014 0.013 0.476 0.484 

0.917 0.933 
0,700 0.800 
0.386 0.649 
0,117 0.542 
0.012 0.504 

*+ same for K 

variances. It is easily seen from (la) and (lb) that this 
expression is also valid for E and that to the order of 
the linear term in the variance, the Poisson ratio of the 
aggregate remains equal to the common Poisson 
ratio of the constituent materials. Equation 9 could 
also have been derived from the more general pertur- 
bation methods used by Silnutzer [12] for the plane 
strain problem. 

We seek an approximate expression giving effective 
stiffness which depends only on the average stiffness 
and on the variance, and which is valid even for rather 
large variances. We can find a clue as to where to look 
if we consider that the bounds of Hashin (Equations 
6 and 7) correspond to the effective stiffness of real 
two-phase materials (and thus his bounds are the best 
possible in terms only of the stiffness constants of the 
two constituting materials and of their area fractions). 
This was shown by Hashin to be true for K and only 
recently Milton [13] showed that the analogous 
expressions for G in the three-dimensional case repre- 
sent realizeable two-phase material geometries; hence 
for our two-dimensional case this is apparently also 
true. Hashin's lower bound on K corresponds to a 
material constructed as follows: consider a plane com- 
pletely filled with composite discs, each disc having a 
core with material of constants G2 and K 2 and an outer 
ring of  material constants G~ and K~. The ratio of the 
core diameter to the outer diameter of the ring is 
maintained constant such that the core always con- 
stitutes the area fraction v2 of the composite disc, and 
it is assumed that composite discs of all sizes are 
available so that in the limit the plane can be com- 
pletely filled. The upper bounds are realized when the 
roles of the two materials are reversed. The essential 
"qualitative" feature of these two materials is that the 
stiffer (softer) material is clearly identified with convex 
inclusions which are well separated from each other 
while the softer (stiffer) material plays the role of  the 
matrix. As an indication that these are the main 
geometrical features as far as influencing effective stiff- 
ness we have computed, using the finite element method 
(see Appendix A for details), the effective modulus of 
the material shown in Fig. 1 with v = 1/3. Due to the 
three-fold symmetry this material is globally isotropic; 
the triangular inclusions constitute 50% of the total 
area. The effective stiffness constants of this material 
are shown in Table I and compared with the Hashin 
bounds. The striking closeness of the results to the 
Hashin bounds is a strong indication of  the import- 
ance of the inclusion-matrix geometry in determining 

effective modulus. (It also constitutes strong circum- 
stantial evidence as to the realizability of the Hashin 
bounds.) Now the distribution of mass density of 
paper does not show an inclusion-matrix feature. In 
fact visual examination of mass density maps of paper 
(from beta radiographs or light transmission) shows at 
least a subjective symmetry between light and dark 
areas. Hence in seeking our approximate expression 
for effective stiffness we sought a symmetric model. 
The simplest symmetric model with global isotropy is 
that shown in Fig. 2. Its effective stiffnesses were cal- 
culated using the finite element method (see Appendix 
A for details). The results for G are shown by the 
circles in Fig. 3. Also shown there are the Hashin 
bounds (Equation 8) and Expression 9 for the effective 
stiffness to linear terms in the variance. It is clear that 
for this symmetric model Equation 9 is not only valid 
for small variances, but is an excellent approximation 
even for large variances. The results for K and E lead 
to similar conclusions as to the validity of Equation 9 
when G is replaced by K or E. 

3. A p p l i c a t i o n  t o  paper  
Let us apply the results of the last section to a paper 
sheet. As pointed out the largest coefficient of vari- 
ation found by Corte [8] for 1 mm square inspection 
zones was 0.18. Now Poisson's ratio for paper is 
usually taken to be 1/3 or a bit less [14]; then the 
coefficient (1 + v)/2 in Equation 9 is either 2/3 or 
slightly smaller. Hence if the variances as measured on 
zones of size 1 mm by 1 mm are representative of the 
true stiffness variances then we can expect stiffness 
reductions of no more than of the order (2/3)(0.18) 2. 
These are clearly insignificant. As pointed out earlier, 
however, variance increases as the inspection zone size 

Figure 1 Model of material with well separated convex inclusions. 
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Figure 2 Model of symmetric material. 

decreases. However, quite a large increase of variance 
would be necessary to produce a meaningful stiffness 
reduction. No matter how much we shrink the inspec- 
tion zone we cannot find variances greater than the 
point variance. The point variance of  stiffness (assum- 
ing as we have that "stiffness" is proportional to mass 
density) is proportional to the average number of 
fibres at the point (see [7], p. 202). Then 

var G 1 
- ( 1 0 )  

<G> 2 

where ff is average thickness of the sheet in terms 
of number of  fibres. Since ~ is usually 8 or more, 
even this would not constitute a significant stiffness 
reduction. We note that for extremely thin sheets 
the point coefficient of  variation, which is an upper 
bound on the zonal coefficient of  variation we have 
heretofore considered, can be quite high. We must of  
course question the validity of  applying Equation 9 at 
size scales comparable to fibre width. Equation 9 is 
based on a continuum assumption; it is not at all clear 
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Figure 3 Comparison of the expression of Equation 9 with the finite 
element calculation of effective shear modulus of a symmetric 
material. 

what is the minimum inspection size for which zonal 
variance could reasonably be put into Equation 9. 
However, based on the low variances involved one 
cannot apparently avoid the conclusion that effective 
stiffness of  the sheet is very nearly the average of the 
local stiffness. This would be a valid conclusion were 
it not for another factor we have not yet considered. 

It has been recognized for over twenty years t h a t  
paper has a layered structure. This structural form 
was put forth by Kallmes and Corte [15], essentially as 
a mathematical device to facilitate their analysis of the 
statistical geometry of  a paper sheet. Since then it has 
come to be well accepted that the actual physical 
structure and the behaviour of  paper indicate strong 
layering, and it has been demonstrated that this layer- 
ing is an inevitable outcome of the thickening and 
filtration process during the forming of the wet web 
[16]. We posit that the paper sheet can be modelled by 
thin layers "stitched" together by bonds. The individ- 
ual layers of the sheet would have relatively very high 
mass density variance (and hence stiffness variances). 
If the "stitches" are spaced far apart relative to a 
statistical scale then the stiffness of the sheet would 
equal the average of the stiffness of the individual 
layers - i.e., exactly the layer stiffness if all layers are 
statistically identical. Then the sheet stiffness would be 
greatly reduced. If the "stitches" are very closely 
spaced then the average mass across the layers is the 
appropriate mass density from which variances are to 
be derived - and as has been pointed out, these are 
relatively small. As a simplistic illustration of this idea 
consider a sheet made up of two layers of the material 
shown in Fig. 2. Place one layer over the other such 
that the white triangles of one coincide with the shaded 
triangles of the other. Were the two layers continu- 
ously glued together or "stitched" at a spacing small 
compared to triangle size then sheet stiffness would 
be simply the average stiffness of the "white" and 
"shaded" materials. If, however, the stitching was at 
a scale large compared to triangle dimensions the 
sheet stiffness would be equal to layer stiffness (i.e., 
reduced from the nominal average stiffness) as this is 
calculated from Equation 9. For  a paper sheet (or its 
layers) the mass density (local stiffness) variance 
increases at small zone sizes. Hence we can conceive of 
the process just described taking place on a continu- 
ous basis. The closer is the "stitching" the lower is the 
"effective" variance of  the sheet. Now the relative 
bonded area (RBA) of  a sheet of paper is defined as 
that fraction of  the total upper and lower surface of 
the fibres which is bonded to another fibre surface. As 
the relative bonded area of a sheet increases the bond 
density will increase, i.e., the bonds will be more 
closely spaced. The simplest assumption relating rela- 
tive bonded area to a zone size for which adjacent 
layers can be assumed to be knitted together would be 
to take the side length squared of such a zone size to 
be proportional to the relative bonded area, i.e., 

RBA ~: a 2 

or  

a oz (RBA) In (1 la) 
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Figure 4 (a) Calculated and approximate 
dependence of specific perimeter on aver- 
age fibre length. (b) Calculated and linear 
approximation for the factor ~c as it 
depends on the ratio of  inspection zone 
size to fibre length. 

The implication of this assumption is that as the RBA 
increases the number of bonding sites increases pro- 
portionately, their spacing becoming denser. In other 
words we are saying that there is a threshold area on 
the interlayer surface which must be bonded in order 
to guarantee that the layers work together. We can 
also determine the nature of the dependence of a on 
fibre length. Jordan and Nguyen [17] have calculated 
"specific perimeter" for a random sheet. They point 
out that specific perimeter is a measure of how fine- 
grained the formation texture is. Its reciprocal would 
be a measure of the scale of the texture. Using 30 #m 
as mean fibre width with standard deviation of 4 #m 
their Fig. 11 shows specific perimeter as a function of 
average fibre length, L. Their computation involves a 
numerical procedure but a very close approximation 
to the result is given by 

1 
specific perimeter ~ L~/2 

(see Fig 4a). Jordan [18] has verified this behaviour for 
length distributions other than that of  the previously 
cited reference. Thus the scale of  the texture is pro- 
portional to L 1/2 and we take 

a oc L 1/2 ( l lb )  

Now the variance of average mass density in an 
inspection zone of an ideal network of  fibres is given 
by [19] 

var W* Lco 
W2 - K a2 (12) 

where L is the fibre length, co the fibre width, and by 
the assumed linear relationship between local mass 
density and local stiffness the left-hand side is also the 
coefficient of  variation of  the stiffness. ~ is a non- 
dimensional factor dependent on the ratio a/L. The 
range of a of interest to us is from somewhat more 
than fibre-to-fibre crossing distance up to somewhat 
less than fibre length. Using Corte's expression for 
it is found that for 0.1 < a/L  < 0.8 (see Fig. 4b) ~: 
can be taken, as a very good approximation, to be 
proportional to a/L. In reality Corte's experiments [8] 
have shown that variance of real papers are greater 
than those predicted by Equation 12, but there is no 
reason to expect that the nature of the dependence on 
L, co and a is radically altered. Then Equation 12 gives 

var W* co 
W2 oc --a (13) 
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Figure 5 Elastic modulus  plotted against scattering coefficient for sheets made of the same pulp with different average fibre length ( i  2.01 mm,  
�9 1.41 ram, �9 I . I0mm).  Curves are fitted to Equation I7 using ( E )  = I310km, S o = 438cm2 g ~, C = 0 .223mm ~/2. The moduIus is 
normalized by the mass density of  the sheet and reported in the traditional " length" unit, km. 
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and from Equations l l a  and l lb ,  recalling our 
assumption that local elastic stiffness is proportional 
to local mass density, we conclude that 

var G 1 
<G>2 oc (L �9 RBA) '/2 (14) 

and using Equation 9 we can finally write, in terms of 
the Young's modulus, 

E*  = ( E )  1 ( L .  RBA) '/2 (15) 

where C is some constant. This form for the depend- 
ence of  effective stiffness shows the same tendencies as 
that suggested by Page and Seth, and we will see that 
it is equally consistent with their data. 

4. C o m p a r i s o n  w i t h  e x p e r i m e n t a l  
r e s u l t s  

Optical scattering coefficient of a sheet is generally 
taken to be a measure of  the relative bonded area in 
the form [5] 

& - S  
RBA - (16) 

S0 

where S and So are the optical scattering coefficients of 
the sheet and of  the fibres (in their unbonded state) 
respectively. Equation 15 then becomes 

( C(S~ ) (17) 
E* = ( E )  1 - [L(S0 - S)] ~/2 

By appropriately choosing the parameters ( E ) ,  C and 
So this expression can be made to fit quite well all of  
the data for E*  as a function of S reported by Page 
and Seth [5]. In these experiments fibre length was not 
controlled. However, a more discriminatory set of  
data is that subsequently reported by them [20]. Here 
fibre length was varied by preparing a series of  pulps 
from guillotined handsheets so that fibre length varied 
while all other properties remained constant. A fit of  
Equation 17 to this data is shown in Fig. 5. The 
equation is clearly seen to be consistent with the data. 
We should point out that the fit is not better than that 
found by Seth and Page using the relationship derived 
from their theory. Their expression is 

E*  - Er(3 L(~CS~ s) tanhL(S~ (18) 

Where Er is the axial Young's modulus of the fibre. 
The fit of  the data to either equation predicts nearly 
identical values of  So. Hence both place any particular 
data point at the same RBA. It is not our purpose to 
compare the two theories and determine which is 
"better".  Each certainly represents a gross simplifi- 
cation of the actual strain distribution in the sheet. 
Quite likely both mechanisms come into play, i.e., 
diminution of the strain in individual fibres near their 
ends, and diminution of  the local strain below the 
average strain in the sheet at a larger dimensional scale 
due to inevitable non-uniformitieS of mass distri- 
bution whose effect is accentuated by low relative 
bonded area. Which is the dominant mechanism is not 

clear at this point. Some obvious limitations of the 
present theory must be pointed out. It cannot be 
expected to be applicable at very high or very low 
RBA since here the approximations l la and l lb 
would not be expected to hold. It is however interest- 
ing to note an implication, probably fortuitous, of  
Equation 17. That  expression implies that the elastic 
modulus should drop to zero at some finite RBA 
over 0. In other words it is predicting a threshold 
RBA below which a connected network of fibres 
will not be formed. For the data just considered, 
such thresholds are predicted to be 2.6%, 3.7% 
and 4.7% for fibre lengths of 2.01, 1.41 and 1.1 mm 
respectively. 

5. Conclusions 
Equation 15 shows the manner in which Young's 
modulus depends on relative bonded area and fibre 
length due to the influence of mass non-uniformity of 
the sheet. This influence is magnified as RBA is 
reduced. As fibre length increases the influence of 
RBA is decreased; for infinitely long fibres the effec- 
tive Young's modulus is not reduced from the average 
modulus of the sheet. As was indicated earlier, the 
mass non-uniformity should not appreciably influence 
the Poisson ratio. We have already pointed out that 
the effect considered here is not the only one acting to 
reduce paper stiffness. At a smaller geometrical scale 
the inability of  fibre ends to achieve strain levels glo- 
bally present in the sheet will also reduce stiffness. This 
effect was modelled by Page and Seth [5]. As the 
relative bonded area decreases, the "laminate" effect 
which stiffens the sheet by inducing transverse fibre 
strains will become less effective [6]. 

We close by pointing out that in order to examine 
the effect of mass density variations coupled with low 
RBA on elastic stiffness it was necessary to construct 
a model of sufficient simplicity so as not only to be 
mathematically viable but also to contain a small 
enough number of undetermined parameters so that 
comparison with experimental results can be seen as a 
corroboration of the suggested mechanism rather than 
simply as a curve-fitting exercise, thus the "layered" 
model is used. The layering of  paper is not the discrete 
phenomenon implied in the present model, but is 
rather an expression of the strong tendency of the 
fibres to be parallel to the sheet plane and not to 
be "felted", that is not to be interwoven. It might 
be appropriate here to quote the words of  Corte 
([7], p. 273) in discussing a model due to Scallan 
and Borch [21] to explain the optical properties of 
paper: "The approach is reminiscent of  the multilayer 
approach to the porous structure of p a p e r . . ,  and it 
has the same weakness, namely, the uncertainty of the 
definition of a layer . . . .  The usefulness of such an 
approach does not necessarily depend on whether the 
model can be shown to be real but on the extent to 
which one can use it as a crutch to arrive at a goal that 
is quite independent of the construction of the 
crutch." 

Appendix  A 
The strain energy contained in some area A of an 
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elastic sheet of unit thickness in plane stress is given by 

+ G [2s~v + �89 - e.,.) z] ) dA (A1) 

Where e,. and e, are normal strains in the x and y 
directions respectively and e v is the shear strain. 
Consider the following in-plane displacement system 
imposed on the boundary of a sample of an elastic 
sheet 

u = b x  

v = by  (A2) 

where b is a constant, u the displacement in the x 
direction and v in the y direction. Such displacements 
imposed on the boundary of a material with uniform 
elastic properties would produce a uniform strain 
field. The strain energy in the sample would be 

U = 2 K  b A  (A3) 

where K is the constant area modulus of the material. 
However, if the sample had varying stiffness, and 
further if the sample were large compared to the 
geometry of the microstructure and if the phase 
geometry is such that the overall mechanical behaviour 
is isotropic then the displacements imposed on the 
boundary would result in strain energy 

U = 2K* b A  (A4) 

where K* is the effective area modulus of the sample 
(see [9], p. 39 for a formal proof in the three- 
dimensional case). Thus if we can compute the strain 
energy for a sample on whose boundary these dis- 
placements are imposed the effective area modulus is 
known. Similarly if we impose the displacements 

U ~ bx  

v = - b y  (A5) 

the strain energy for a uniform material is 

U = 2 G  ba (A6) 

and for a material with varying stiffness is 

U = 2 G * b A  (A7) 

Consider the material of Fig. 1. Taking advantage 
of its symmetries we need compute the strain energy 
only in the representative area ABCD, applying the 
boundary conditions of Equations A2 and A5 to cal- 
culate K* and G*, respectively. This was done using 
312 triangular elements with the MS/NASTRAN finite 
element program. (See Fig. 6a.) For the material 
described in Fig. 2 there is no symmetry with respect 
to a horizontal line. Therefore we used a strip of width 
one-half a triangle base in the analysis (between lines 
AB and CD in Fig. 2). The boundary conditions were 
applied to a strip of five half-equilateral-triangle pairs 
(see Fig. 6b). Energy was recorded separately for 
each pair. In no instance did the energy for the 
extreme upper or lower pair vary by more than 5% for 
the stiffness ratios calculated (400 : 1 being the extreme 

B C 

A 

Ca) 

Figure 6 Grid for finite element analysis. 

 gl/1/I 

I N'q  
(b) 

case). The energies calculated for the triangle pairs 
which bracketed the middle pair were almost indis- 
tinguishable from that of the latter. Therefore the 
energies of the middle pair of the five unit strip were 
used. Apparently the St Venant effect operates very 
quickly. 
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